Part Number Hot Search : 
B2567 SSA05320 BDY25A MPSA94 04102 SSE16020 3N101KF4 58004
Product Description
Full Text Search
 

To Download OP22002 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 a
FEATURES Excellent TCV OS Match: 2 V/ C Max Low Input Offset Voltage: 150 V Max Low Supply Current: 100 A Single-Supply Operation: 5 V to 30 V Low Input Offset Voltage Drift: 0.75 V/ C Max High Open-Loop Gain: 2,000 V/mV High PSRR: 3 V/V Low Input Bias Current: 12 nA Wide Common-Mode Voltage Range: V- to Within 1.5 V of V+ Pin Compatible with 1458, LM158, and LM2904 Available in Die Form GENERAL DESCRIPTION
OUT A -IN A +IN A V- 1 2 3 4
Dual Micropower Operational Amplifier OP220
PIN CONFIGURATIONS 8-Lead Hermatic Dip (Z-Suffix)
OP220
8 V+ 7 OUT B 6 5 -IN B +IN B
8-Lead Plastic Dip (P-Suffix)
OUT A -IN A +IN A V- 1 2 3 4
OP220
8 V+ 7 OUT B 6 5 -IN B +IN B
8-Lead SOIC (S-Suffix)
+IN A V- +IN B -IN B 1 2 3 4 8 -IN A 7 OUT A 6 V+ 5 OUT B
8-Lead TO-99 (J-Suffix)
The OP220 is a monolithic dual operational amplifier that can be used either in single or dual supply operation. The low offset voltage and input offset voltage tracking as low as 1.0 mV/C, make this the first micropower precision dual operational amplifier. The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between channels provides high performance in instrumentation amplifier designs. The individual amplifiers feature extremely low input offset voltage, low offset voltage drift, low noise voltage, and low bias current. They are fully compensated and protected. Matching between channels is provided on all critical parameters including input offset voltage, tracking of offset voltage versus temperature, noninverting bias currents, and common-mode rejection ratios.
V+ Q11 Q3 -IN +IN Q7 Q29 Q5 Q6 Q13 NULL* Q33 Q1 Q9 Q10 Q8 OUTPUT Q27 Q4 Q2 Q26 Q12 Q28
V- *ACESSIBLE IN CHIP FORM ONLY
REV. A
Figure 1. Simplified Schematic
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 (c) Analog Devices, Inc., 2002
OP220-SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (@ V =
S
2.5 V to
Min
15 V, TA = 25 C, unless otherwise noted.)
Min OP220F Typ 250 0.2 13 0/3.5 -15/+13.5 85 90 10 18 500 90 95 10 18 800 32 57 300 Max 300 2 25 Min OP220C/G Typ Max 500 0.2 14 0/3.5 -15/+13.5 75 80 85 90 32 57 500 100 180 750 3.5 30 Unit mV nA nA V V dB dB mV/V mV/V V/mV
Parameter Input Offset Voltage Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio
Symbol VOS IOS IB IVR CMRR
Conditions VS = 2.5 V to 15 V VCM = 0 VCM = 0 V+ = 5 V, V- = 0 V VS = 15 V V+ = 5 V, V- = 0 V 0 V VCM 3.5 V VS = 15 V -15 V VCM +13.5 V VS = 2.5 V to 15 V, V- = 0 V, V+ = 5 V to 30 V V+ = 5 V, V- = 0 V, RL = 100 kW, 1 V VO 3.5 V VS = 15 V, RL = 25 kW VO = 10 V V+ = 5 V, V- = 0 V RL = 10 kW VS = 15 V, RL = 25 kW RL =25 kW AVCL = 1, RL =25 kW VS = 2.5 V, No Load VS = 15 V, No Load
OP220A/E Typ Max 120 0.15 12 150 1.5 20
0/3.5 -15/+13.5 90 95 100 100 3 6 500 1,000
Power Supply Rejection Ratio Large-Signal Voltage Gain
PSRR AVO
1,000 0.7/4 14
2,000
1,000 0.7/4 14
2,000
800 0.8/4 14
1,600
V/mV V V
Output Voltage Swing Slew Rate* Bandwidth Supply Current (Both Amplifiers)
*Sample tested.
VO
SR BW ISY
0.05 200 100 140 115 170
0.05 200 115 150 125 190
0.05 200 125 205 135 220
V/ms kHz mA mA
ELECTRICAL CHARACTERISTICS -40 C T +85 C for OP220G unless otherwise noted.)
A
(Vs =
2.5 V to
15 V, -55 C TA +125 C for OP220A/C, -25 C TA +85 C for OP220E/F,
OP220F Typ 1.2 400 0.6 13 0/3.2 -15/+13.2 80 85 18 32 500 0.9/3.8 13.6 135 190 170 250 155 200 185 280 85 90 18 32 800 57 100 400 1.0/3.8 13.6 170 275 210 330 OP220C/G Typ Max 2 1,000 0.6 14 0/3.2 -15/+13.2 70 75 80 85 57 100 500 180 320 3
Parameter Input Offset Voltage Drift* Input Offset Voltage Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio
Symbol TCVOS VOS IOS IB IVR CMRR
Conditions VS = 15 V
Min
OP220A/E Typ Max 0.75 200 1.5 300 2 25
Min
Max 2 500 2.5 30
Min
Unit mV/C
1,300 mV 5 40 nA nA V V dB dB mV/V mV/V V/mV V V mA mA
VCM = 0 VCM = 0 V+ = 5 V, V- = 0 V VS = 15 V V+ = 5 V, V- = 0 V 0 V VCM 3.2 V VS = 15 V -15 V VCM +13.2 V VS = 2.5 V to 15 V, V- = 0 V, V+ = 5 V to 30 V VS = 15 V, RL = 50 kW VO = 10 V V+ = 5 V, V- = 0 V RL = 20 kW VS = 15 V, RL = 50 kW VS = 2.5 V, No Load VS = 15 V, No Load 500 0.9/3.8 13.6
0.5 12 0/3.2 -15/+13.2 86 90 90 95 6 10 1,000
Power Supply Rejection Ratio Large-Signal Voltage Gain Output Voltage Swing Supply Current (Both Amplifiers)
*Sample tested.
PSRR AVO VO
ISY
-2-
REV. A
OP220 MATCHING CHARACTERISTICS (@ V =
S
15 V, TA = 25 C, unless otherwise noted.)
Min OP220A/E Typ Max 150 300 20 1.5 87 14 Min OP220F Typ 250 15 1 95 18 44 Max 500 25 2 72 Min OP220C/G Typ Max 300 20 1.4 85 57 140 800 30 2.5 Unit mV nA nA dB mV/V
Parameter Input Offset Voltage Match Average Noninverting Bias Current Noninverting Offset Current Common-Mode Rejection Ratio Match1 Power Supply Rejection Ratio Match2
Symbol DVOS I B+ IOS+ DCMRR DPSRR
Conditions
VCM = 0 VCM = 0 VCM = -15 V to +13.5 V VS = 2.5 V to 15 V, 92
10 0.7 100 6
NOTES 1 DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error.
2 3
DPSRR is
Input Referred Differential Error . DVS
Sample tested.
MATCHING CHARACTERISTICS
Parameter Input Offset Voltage Match Input Offset Voltage Tracking1 Average Noninverting Bias Current Average Drift of Noninverting Bias Current1 Noninverting Offset Current Average Drift of Noninverting Offset Current1 Common-Mode Rejection Ratio Match2 Power Supply Rejection Ratio Match3 Symbol DVOS TCDVOS I B+ TCIB+ VCM = 0 VCM = 0 Conditions
(Vs = 15 V, -55 C TA +125 C for OP220A/C, -25 C TA +85 C for OP220E/F, -40 C TA +85 C for OP220G unless otherwise noted. Grades E, F are sample tested.)
Min OP220A/E Typ Max 250 1 10 15 500 2 25 25 Min OP220F Typ 400 1.5 15 15 Max 800 3 30 30 Min OP220C/G Typ Max 800 1.5 22 30 Unit
1,800 mV 5 40 50 mV/C nA pA/C
IOS+ TCIOS+
VCM = 0 VCM = 0
0.7 7
2 15
1 12
2.5 22.5
2.5 15
5 30
nA pA/C
DCMRR DPSRR
VCM = -15 V to +13 V VS = 2.5 V to 15 V,
87
96 10 26
82
96 30 78
72
80 57 250
dB mV/V
NOTES 1 Sample tested. 2 DCMRR is 20 log 10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error.
3
DPSRR is
Input Referred Differential Error . DVS
TYPICAL ELECTRICAL CHARACTERISTICS (@ V =
s
15 V, TA = 25 C, unless otherwise noted.)
OP220N Typical 1.5 Unit mV/C V/mV
Parameter Average Input Offset Voltage Drift Large-Signal Voltage Gain
Symbol TCVOS AVO
Conditions
RL = 25 kW
2000
REV. A
-3-
OP220-SPECIFICATIONS
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V Differential Input Voltage . . . . . . . . . . 30 V or Supply Voltage Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage Output Short-Circuit Duration Indefinite Storage Temperature Range . . . . . . . . . . . . -65C to +150C Junction Temperature (Ti) . . . . . . . . . . . . . -65C to +150C Operating Temperature Range OP220A/OP220C . . . . . . . . . . . . . . . . . . -55C to +125C OP220E/OP220F . . . . . . . . . . . . . . . . . . . . -25C to +85C OP220G . . . . . . . . . . . . . . . . . . . . . . . . . . . -40C to +85C Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300C
NOTES *Absolute Maximum Ratings apply to packaged parts, unless otherwise noted.
ABSOLUTE MAXIMUM RATINGS*
Package Type 8-Lead Hermetic DIP (Q) 8-Lead Plastic DIP (N) 8-Lead SOL (RN) TO-99 (H)
*
JA*
JC
Unit C/W C/W C/W C/W
148 103 158 150
16 43 43 18
JA is specified for worst-case mounting conditions, i.e., JA is specified for device in socket for CERDIP and PDIP packages; JA is specified for device soldered to printed circuit board for SO packages.
ORDERING GUIDE
DIE CHARACTERISTICS
TA = 25C VOS MAX (mV) CERDIP 150 150 300 750 750 750 OP220AZ* OP220EZ* OP220FZ*
Package Options Plastic TO-99
Operating Temperature Range MIL IND IND XIND XIND
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. DIE SIZE 0.097 INCH 0.063 INCH, 6111 SQ. MILS (2.464 mm 1.600 mm, 3.94 SQ. mm) NOTE : ALL V+ PADS ARE INTERNALL CONNECTED
INVERTING INPUT (A) NONINVERTING INPUT (A) BALANCE (A) V- BALANCE (B) NONINVERTING INPUT (B) INVERTING INPUT (B) BALANCE (B) V+ OUT (B) V+ OUT (A) V+ BALANCE (A)
OP220CJ* MIL OP220GZ* OP220GP* OP220GS
For military processed devices, please refer to the Mil Standard Data Sheet OP220AJ/883*.
*Not for new design. Obsolete April 2002.
WAFER TEST LIMITS (@ VS = Parameter Input Offset Voltage Input Offset Voltage Match Input Offset Current Input Bias Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Voltage Swing Supply Current (Both Amplifiers)
2.5 V, to
15 V, TA = 25 C, unless otherwise noted.)
Conditions OP220N Limit 200 300 VCM = 0 VCM = 0 VS = 15 V V- = 0 V, V+ = 5 V, 0 V VCM 3.5 V -15 V VCM 13.5 V, VS = 15 V VS = 2.5 V to 15 V V- = 0 V, V+ = 5 V to 30 V RL = 25 kW, VS = 15 V VO = 10 V V+ = 5 V, V- = 0 V, RL = 10 kW VS = 15 V, RL = 25 kW VS = 2.5 V, No Load VS = 15 V, No Load 2 25 -15/13.5 88 93 12.5 22.5 1000 0.7/4 14 125 190 Unit mV Max mV Max nA Max nA Max V Min dB Min mV/V Max V/mV Min V Min mA Max
Symbol VOS VOS IOS IB IVR CMRR PSRR AVO VO ISY
NOTE Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packing is not guaranteed for standard product dice. Consult factory to negotiate specifications based on die lot qualification through sample lot assembly and testing.
-4-
REV. A
Typical Performance Characteristics- OP220
150 VS = 15V 100
INPUT OFFSET VOLTAGE - V
INPUT BIAS CURRENT - nA
14 VS = 15V 12
10
50
8
0
6
-50
4
-100
2 0 -100
-150 -50
-25
0
25
50
75
100
125
-50
TEMPERATURE - C
0 50 TEMPERATURE - C
100
150
TPC 1. Normalized Offset Voltage vs. Temperature
TPC 4. Input Bias Current vs. Temperature
80 TA = 25 C 60
700 VS = 15V 600
INPUT OFFSET VOLTAGE - V
40
INPUT OFFSET CURRENT - pA
0 4 8 12 POWER SUPPLY VOLTAGE - V 16 20
500
20
400
0
300
-20
200
-40 -60
100 0 -100
-50
0 50 TEMPERATURE - C
100
150
TPC 2. Input Offset Voltage vs. Power Supply Voltage
TPC 5. Input Offset Current vs. Temperature
110 VS = 15V 100 90
OPEN-LOOP GAIN - dB
200
180 TA = 125 C
A SUPPLY CURRENT -
80 70 60 50 40 30 20
10Hz
160
100Hz
140 TA = 25 C 120
1kHz
100 TA = -55 C 80
10 0 -75 -50 -25 0 25 50 TEMPERATURE - C 75 100 125
60 0 2.5 5.0 7.5 10.0 12.5 SUPPLY VOLTAGE - V 15.0 17.5
TPC 3. Open-Loop Gain vs. Temperature
TPC 6. Supply Current vs. Supply Voltage
REV. A
-5-
OP220
120 TA = 25 C VS = 15V 100
160 140 120 GAIN 100 PHASE 80 60 40 TA = 25 C VS = 15V
0
80
CMRR - dB
60
90
40
m = 53
135
20
20
0 0.01
0.1
1 10 FREQUENCY - Hz
100
1k
0 0.01
0.1
1
10 100 1k FREQUENCY - Hz
10k
100k
1M
180
TPC 7. CMRR vs. Frequency
TPC 10. Open-Loop Voltage Gain and Phase vs. Frequency
130 120 110 100
PSRR - dB
36
TA = 25 C VS = 15V
PEAK-TO-PEAK AMPLITUDE - V
32 28 24 20 16 12 8 4
TA = 25 C VS = 15V
+PSRR 90 80 70 -PSRR 60 50 40
1
10
100 1k FREQUENCY - Hz
10k
100k
0 100
1k
10k FREQUENCY - Hz
100k
1M
TPC 8. PSRR vs. Frequency
TPC 11. Maximum Output Swing vs. Frequency
17 TA = 25 C 15
0.09 0.08
VS = 15V
PEAK OUTPUT VOLTAGE - V
0.07
SLEW RATE - V/ sec
VS = 15V 0.06 0.05 0.04 0.03 0.02 0.01 VS = 5V
10
5 VS = 5V
0
1
10 LOAD RESISTANCE - k
100
0 -75
-50
-25
0
25 50 75 TEMERATURE - C
100
125
150
TPC 9. Maximum Output Voltage vs. Load Resistance
TPC 12. Slew Rate vs. Temperature
-6-
REV. A
PHASE SHIFT - Degrees
OPEN-LOOP GAIN - dB
45
OP220
1,000 10
CURRENT NOISE DENSITY - pA/ Hz VOLTAGE NOISE DENSITY - nV/ Hz
1
100
0.1
10 0.1
1
10 FREQUENCY - Hz
100
1k
0.01 0.1
1
10 FREQUENCY - Hz
100
1k
TPC 13. Voltage Noise Density vs. Frequency
TPC 14. Noise Density vs. Frequency
REV. A
-7-
OP220
R0
50mV
100 90
2s
GAIN ADJ R1 R2
V1 A1 VCM - 1/2 VD
10 0%
R4 R3
- VD
1/2 OP220
20mV
VCM + 1/2 VD +
A2
VO
1/2 OP220
INPUT OUTPUT
OP220
25k 100pF
VO =
R1 E If R1 = R2 = R 3 = R4 , thenVO = 2A 1 + VD E R0
R4 E R 3 R2 R4 E 1 E R2 R 3 R2 + R 3 1+ A VD + + VCM A + R 3 E R4 R1 R 3 I 2 E R1 R4 R0 I
Figure 2. Small-Signal Transient Response
2V
100 90
Figure 4. Two Op Amp Instrumentation Amplifier Configuration
200 s
The input voltages are represented as a common-mode input VCM plus a differential input VD. The ratio R3/R4 is made equal to the ratio R2/R, to reject the common-mode input VCM. The differential signal VD is then amplified according to:
VO = R 3 R2 R4 E R 3 R2 + R 3 + = A1 + VD , where R4 R1 R3 E R4 RO
10 0%
5V
INPUT OUTPUT
OP220
RL 25k CL 100pF
Note that gain can be independently varied by adjusting RO. From considerations of dynamic range, resistor tempco matching, and matching of amplifier response, it is generally best to make RX, R2, R3, and R4 approximately equal. Designating R1, R2, R3, and R4 as RN allows the output equation to be further simplified:
40k 10k
E R VO = 2 A 1 + N VD , where RN = R1 = R2 = R 3 = R4 RO E
Dynamic range is limited by A1 as well as A2; the output of A1 is:
Figure 3. Large-Signal Transient Response
INSTRUMENTATION AMPLIFIER APPLICATIONS OF THE OP220 Two Op Amp Configuration
E R V 1 = -A 1 + N VD + 2 VCM RO E
If the instrumentation amplifier were designed for a gain of 10 and maximum VD of 1 V, then RN/RO would need to be four and VO would be a maximum of 10 V. Amplifier A1 would have a maximum output of 5 V plus 2 VCM, thus a limit of 10 V on the output of A1 would imply a limit of 2.5 V on VCM. A nominal value of 100 kW for RN is suitable for most applications. A range of 200 W to 25 kW for RO will then provide a gain range of 10 to 1,000. The current through RO is VD/RO, so the amplifiers must supply 10 mV/200 W when the gain is at the maximum value of 1,000 and VD is at 10 mV. Rejecting common-mode inputs is most important in accurately amplifying low-level differential signals. Two factors determine the CMR of this instrumentation amplifier configuration (assuming infinite gain): 1. CMRR of the op amps 2. Matching of the resistor network (R3/R4 = R2/R1) -8- REV. A
The excellent input characteristics of the OP220 make it ideal for use in instrumentation amplifier configurations where low-level differential signals are to be amplified. The low-noise, low input offsets, low drift, and high gain combined with excellent CMRR provide the characteristics needed for high-performance instrumentation amplifiers. In addition, the power supply current drain is very low. The circuit of Figure 4 is recommended for applications where the common-mode input range is relatively low and differential gain will be in the range of 10 to 1,000. This two op amp instrumentation amplifier features independent adjustment of common-mode rejection and differential gain. Input impedance is very high since both inputs are applied to noninverting op amp inputs.
OP220
In this instrumentation amplifier configuration, error due to CMRR effect is directly proportional to the differential CMRR of the op amps. For the OP220A/E, this combined CMRR is a minimum of 98 dB. A combined CMRR value of 100 dB and common-mode input range of 2.5 V indicates a peak inputreferred error of only 25 mV. Resistor matching is the other factor affecting CMRR. Defining Ad as the differential gain of the instrumentation amplifier and assuming that R1, R2, R3 and R4 are approximately equal (RN will be the nominal value), then CMRR will be approximately AD divided by 4DR/RN. CMRR at differential gain of 100 would be 88 dB with resistor matching of 0.1%. Trimming R1 to make the ratio R3/R4 equal to R2/R1 will directly raise the CMRR until it is limited by linearity and resistor stability considerations. The high open-loop gain of the OP220 is very important in achieving high accuracy in the two-op-amp instrumentation amplifier configuration. Gain error can be approximated by:
AD 1 Gain Error = , <1 AD 2 A01 A02 1+ A02
VCM + 1/2 VD
THREE OP AMP CONFIGURATION
A three op amp instrumentation amplifier configuration using the OP220 and OP777 is recommended for applications requiring high accuracy over a wide gain range. This circuit provides excellent CMR over a wide input range. As with the two op amp instrumentation amplifier circuits, tight matching of the two op amps provides a real boost in performance.
R1 VO = VD 1 + R2 A1 VCM - 1/2 VD - R0 VD V1 V+ 2R1 R0
R2
1/2 OP220
R1 V+ R2 A2 V2
OP777
A3 VO
+
V- R2
1/2 OP220
V-
where AD is the instrumentation amplifier differential gain and A02 is the open-loop gain of op amp A2. This analysis assumes equal values of R1, R2, R3, and R4. For example, consider an OP220 with A02 of 700 V/mV. If the differential gain AD were set to 700, the gain error would be 1/1.001 which is approximately 0.1%. Another effect of finite op amp gain is undesired feedthrough of common-mode input. Defining A01 as the open-loop gain of op amp A1, then the common-mode error (CME) at the output due to this effect will be approximately:
Figure 5. Three Op Amp Instrumentation Amplifier Using OP220 and OP777
A simplified schematic is shown in Figure 2. The input stage (A1 and A2) serves to amplify the differential input VD without amplifying the common-mode voltage VCM. The output stage then rejects the common-mode input. With ideal op amps and no resistor matching errors, the outputs of each amplifier will be:
E 2R1 VD + VCM V 1 = -A 1 + RO 2 E E 2R1 VD V 2 = A1 + + VCM RO 2 E E 2R1 VO = V 2 -V 1 = A 1 + VD RO E VO = ADVD
2 AD 1 CME = V AD A01 CM 1+ A01
For AD/A01, < 1, this simplifies to (2 AD/A01) VCM. If the op amp gain is 700 V/mV, VCM is 2.5 V, and AD is set to 700, then the error at the output due to this effect will be approximately 5 mV. The OP220 offers a unique combination of excellent dc performance, wide input range, and low supply current drain that is particularly attractive for instrumentation amplifier design.
The differential gain AD is 1 + 2R1/RO and the common-mode input VCM is rejected. This three op amp instrumentation amplifier configuration using an OP220 at the input and an OP777 at the output provides excellent performance over a wide gain range with very low power consumption. A gain range of 1 to 2,000 is practical and CMR of over 120 dB is readily achievable.
REV. A
-9-
OP220
OUTLINE DIMENSIONS
8-Lead Ceramic DIP - Glass Hermatic Seal [CERDIP] (Q-8)
Dimensions shown in inches and (millimeters)
8-Lead Standard Small Outline Package [SOIC] Narrow Body (RN-8)
Dimensions shown in millimeters and (inches)
0.005 (0.13) MIN
8
0.055 (1.40) MAX
5
5.00 (0.1968) 4.80 (0.1890)
8 5 4
PIN 1
1 4
0.310 (7.87) 0.220 (5.59)
4.00 (0.1574) 3.80 (0.1497)
1
6.20 (0.2440) 5.80 (0.2284)
0.100 (2.54) BSC 0.405 (10.29) MAX 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 15 0 0.015 (0.38) 0.008 (0.20) 0.320 (8.13) 0.290 (7.37) 0.25 (0.0098) 0.10 (0.0040) COPLANARITY SEATING 0.10 PLANE 1.27 (0.0500) BSC 1.75 (0.0688) 1.35 (0.0532) 8 0.25 (0.0098) 0 0.19 (0.0075) 0.50 (0.0196) 0.25 (0.0099) 45
0.51 (0.0201) 0.33 (0.0130)
1.27 (0.0500) 0.41 (0.0160)
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
8-Lead Plastic Dual-in-Line Package [PDIP] (N-8)
Dimensions shown in inches and (millimeters)
0.375 (9.53) 0.365 (9.27) 0.355 (9.02)
8 5
8-Lead Metal Can [TO-99] (H-08)
Dimensions shown in inches and (millimeters)
REFERENCE PLANE 0.1850 (4.70) 0.1650 (4.19) 0.5000 (12.70) MIN 0.2500 (6.35) MIN 0.0500 (1.27) MAX 5
0.3700 (9.40) 0.3350 (8.51) 0.3350 (8.51) 0.3050 (7.75)
1
4
0.295 (7.49) 0.285 (7.24) 0.275 (6.98) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.015 (0.38) MIN SEATING PLANE 0.060 (1.52) 0.050 (1.27) 0.045 (1.14)
0.1000 (2.54) BSC
0.1600 (4.06) 0.1400 (3.56) 0.0450 (1.14) 0.0270 (0.69)
4 0.2000 (5.08) BSC 0.1000 (2.54) BSC 3 2 0.0190 (0.48) 0.0160 (0.41) 0.0210 (0.53) 0.0160 (0.41) BASE & SEATING PLANE 1
6 7 8
0.100 (2.54) BSC 0.180 (4.57) MAX 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36)
0.150 (3.81) 0.135 (3.43) 0.120 (3.05)
0.015 (0.38) 0.010 (0.25) 0.008 (0.20)
0.0400 (1.02) MAX 0.0400 (1.02) 0.0100 (0.25)
0.0340 (0.86) 0.0280 (0.71) 45 BSC
COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES)
COMPLIANT TO JEDEC STANDARDS MO-002AK CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
-10-
REV. A
OP220 Revision History
Location 10/02--Data Sheet changed from REV. 0 to REV. A. Page
Edits to TYPICAL ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Change to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
REV. A
-11-
-12-
C00323-0-10/02(A)
PRINTED IN U.S.A.


▲Up To Search▲   

 
Price & Availability of OP22002

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X